6 research outputs found

    Prevalence of abnormal Alzheimer’s disease biomarkers in patients with subjective cognitive decline: cross-sectional comparison of three European memory clinic samples

    Get PDF
    Introduction: Subjective cognitive decline (SCD) in cognitively unimpaired older individuals has been recognized as an early clinical at-risk state for Alzheimer's disease (AD) dementia and as a target population for future dementia prevention trials. Currently, however, SCD is heterogeneously defined across studies, potentially leading to variations in the prevalence of AD pathology. Here, we compared the prevalence and identified common determinants of abnormal AD biomarkers in SCD across three European memory clinics participating in the European initiative on harmonization of SCD in preclinical AD (Euro-SCD). Methods: We included three memory clinic SCD samples with available cerebrospinal fluid (CSF) biomaterial (IDIBAPS, Barcelona, Spain, n = 44; Amsterdam Dementia Cohort (ADC), The Netherlands, n = 50; DELCODE multicenter study, Germany, n = 42). CSF biomarkers (amyloid beta (Aβ)42, tau, and phosphorylated tau (ptau181)) were centrally analyzed in Amsterdam using prespecified cutoffs to define prevalence of pathological biomarker concentrations. We used logistic regression analysis in the combined sample across the three centers to investigate center effects with regard to likelihood of biomarker abnormality while taking potential common predictors (e.g., age, sex, apolipoprotein E (APOE) status, subtle cognitive deficits, depressive symptoms) into account. Results: The prevalence of abnormal Aβ42, but not tau or ptau181, levels was different across centers (64% DELCODE, 57% IDIBAPS, 22% ADC; p < 0.001). Logistic regression analysis revealed that the likelihood of abnormal Aβ42 (and also abnormal tau or ptau181) levels was predicted by age and APOE status. For Aβ42 abnormality, we additionally observed a center effect, indicating between-center heterogeneity not explained by age, APOE, or the other included covariates. Conclusions: While heterogeneous frequency of abnormal Aβ42 was partly explained by between-sample differences in age range and APOE status, the additional observation of center effects indicates between-center heterogeneity that may be attributed to different recruitment procedures. These findings highlight the need for the development of harmonized recruitment protocols for SCD case definition in multinational studies to achieve similar enrichment rates of preclinical AD

    Guidelines for CSF processing and biobanking: impact on the identification and development of optimal CSF protein biomarkers

    No full text
    The field of neurological diseases strongly needs biomarkers for early diagnosis and optimal stratification of patients in clinical trials or to monitor disease progression. Cerebrospinal fluid (CSF) is one of the main sources for the identification of novel protein biomarkers for neurological diseases. Despite the enormous efforts employed to identify novel CSF biomarkers, the high variability observed across different studies has hampered their validation and implementation in clinical practice. Such variability is partly caused by the effect of different pre-analytical confounding factors on protein stability, highlighting the importance to develop and comply with standardized operating procedures. In this chapter, we describe the international consensus pre-analytical guidelines for CSF processing and biobanking that have been established during the last decade, with a special focus on the influence of pre-analytical confounders on the global CSF proteome. In addition, we provide novel results on the influence of different delayed storage and freeze/thaw conditions on the CSF proteome using two novel large multiplex protein arrays (SOMAscan and Olink). Compliance to consensus guidelines will likely facilitate the successful development and implementation of CSF protein biomarkers in both research and clinical settings, ultimately facilitating the successful development of disease-modifying therapies

    Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis.

    No full text
    There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS). To determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression. Data were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell-depleting treatment (ie, ocrelizumab or rituximab). Patients received standard immunotherapies or were untreated. In cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally. This study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P &lt; .001), were inversely correlated with BMI (-1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P &lt; .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [-0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P &lt; .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P &lt; .001). Results of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development

    2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework

    No full text
    corecore